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Abstract. A large number of papers deal with “Closing Lemmas” for
Cr-vector fields (and Cr-diffeomorphisms). Here, we introduce this sub-
ject and formalize the terminology about nontrivially recurrent points
and nonwandering points for the context of planar piecewise smooth
vector fields. A global bifurcation analysis of a special family of piece-
wise smooth vector fields presenting a nonwandering set with nontrivial
recurrence is performed. As consequence, we are able to say that the
Classical and the Improved Closing Lemmas are false for this scenario.

1. Introduction

One of the most challenging problems in the theory of dynamical sys-
tems (of continuous or discrete time) is the so called Closing Lemma (and
variations thereof). Roughly speaking, in this problem the system has a non-
periodic point x0 and the trajectory by x0 return to a small neighborhood of
x0 infinitely many times. The objective is obtain a small perturbation of the
original system in such a way that the new system has a closed trajectory
through x0.

This is an old problem (probably first stated by Poincaré in [16], vol 1, p.
82 in 1899) that have a lot of contributions along the history. This question
is so relevant that Smale (in [22]) established it as one of the problems of the
XXI century (in fact, it is the Problem 10). We strongly suggest reading the
survey [1] about references and the main ideas behind this theme. Several
versions of ”Closing Lemmas” were stated with slightly distinct hypothesis
and conclusions. As consequence several proofs were made (see [13, 14, 15,
17, 18, 19]) for these special cases and several cases were “Closing Lemmas”
fail (see [10, 11, 20]) were stated.

A Piecewise Smooth Vector Field (PSVF, for short) Z = (X,Y ) on the
plane is a pair of Cr-vector fields X and Y , where X and Y are restricted to
regions of the plane separated by a smooth curve Σ (see the books [2] and
[21] and references therein). In the context of PSVFs, a formal theoretical
approach about minimal sets and chaos is in the beginning and only papers
like [3, 4, 8, 12] address the issue. As far as the author knows, there are no
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papers dealing with any version of the Closing Lemma for PSVFs. So, here
we introduce this investigation and establish some terminology. In special
we stated Definitions 5 and 6 that formalize the concepts of nontrivially
recurrent points, nonwandering points and distinguish two kinds of periodic
points.

We also consider perturbations of a PSVF presenting a nonwandering set
with nontrivial recurrence. All topological types in a neighborhood of such
system are considered. The observation of such topological types, achieved
by means of parametric piecewise smooth perturbations of the model, reveals
that no one of them presents periodic points with the desired properties. As
we shall explain below, in order to obtain such periodic points, even the
traditional approach considering a local Cr-perturbation of some nonwan-
dering/nontrivially recurrent point, known as a Cr-surgery (see Subsection
4.2.1) is unsuccessful.

The paper is organized as follow: In Section 2 we give a brief introduction
to the PSVFs theory. In Section 3 we state the main results of the paper. In
Section 4 we prove the main results. In Section 5 we give some conclusions
about the paper.

2. Preliminaries

Now we formalize some basic concepts about PSVFs that pave the way in
order to announce the main results. Let V be an arbitrarily small neighbor-
hood of 0 ∈ R2 and consider a codimension one manifold Σ of R2 given by
Σ = f−1(0), where f : V → R is a smooth function having 0 ∈ R as a regular
value (i.e. ∇f(p) 6= 0, for any p ∈ f−1(0)). We call Σ the switching manifold
that is the separating boundary of the regions Σ+ = {q ∈ V | f(q) ≥ 0} and
Σ− = {q ∈ V | f(q) ≤ 0}. Observe that we can assume, locally around the
origin of R2, that f(x, y) = y.

Designate by χ the space of Cr-vector fields on V ⊂ R2, with r ≥ 1 large
enough for our purposes. Call Ω the space of vector fields Z : V → R2 such
that

(1) Z(x, y) =

{
X(x, y), for (x, y) ∈ Σ+,
Y (x, y), for (x, y) ∈ Σ−,

where X = (X1,X2), Y = (Y1, Y2) ∈ χ. Consider on Ω the product topology.
The trajectories of Z are solutions of q̇ = Z(q) and we accept it to be multi-
valued at points of Σ. The basic results of differential equations in this
context were stated by Filippov in [9], that we summarize next. Indeed,
consider Lie derivatives

X.f(p) = 〈∇f(p),X(p)〉 and Xi.f(p) =
〈
∇Xi−1.f(p),X(p)

〉
, i ≥ 2

where 〈., .〉 is the usual inner product in R2.

We distinguish the following regions on the discontinuity set Σ:

(i) Σc ⊆ Σ is the sewing region if (X.f)(Y.f) > 0 on Σc .
(ii) Σe ⊆ Σ is the escaping region if (X.f) > 0 and (Y.f) < 0 on Σe.
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(iii) Σs ⊆ Σ is the sliding region if (X.f) < 0 and (Y.f) > 0 on Σs.

The sliding vector field associated to Z ∈ Ω is the vector field Zs tangent
to Σs and defined at q ∈ Σs by Zs(q) = m − q with m being the point of
the segment joining q+X(q) and q+ Y (q) such that m− q is tangent to Σs

(see Figure 1). It is clear that if q ∈ Σs then q ∈ Σe for (−Z) and then we
can define the escaping vector field on Σe associated to Z by Ze = −(−Z)s.
In what follows we use the notation ZΣ for both cases. In our pictures we
represent the dynamics of ZΣ by double arrows.

q

q + Y (q)

q +X(q)

ZΣ(q)

Σs

Figure 1. Filippov’s convention.

We say that q ∈ Σ is a Σ-regular point if

(i) (X.f(q))(Y.f(q)) > 0 or
(ii) (X.f(q))(Y.f(q)) < 0 and ZΣ(q) 6= 0 (i.e., q ∈ Σe ∪ Σs and it is not

an equilibrium point of ZΣ).

The points of Σ which are not Σ-regular are called Σ-singular. We distin-
guish two subsets in the set of Σ-singular points: Σt and Σp. Any q ∈ Σp is
called a pseudo-equilibrium of Z and it is characterized by ZΣ(q) = 0. Any
q ∈ Σt is called a tangential singularity (or also tangency point) and it is
characterized by (X.f(q))(Y.f(q)) = 0 (q is a tangent contact point between
the trajectories of X and/or Y with Σ).

Given a tangential singularity q, if there exist an orbit of the vector field
X|Σ+ (respec. Y |Σ−) reaching q in a finite time, then such tangency is called
a visible tangency forX (respec. Y ); otherwise we call q an invisible tangency
for X (respec. Y ). In addition, a tangential singularity q is singular if q
is a invisible tangency for both X and Y . On the other hand, a tangential
singularity q is regular if it is not singular.

In what follows we present the definition of local and global trajectories
for PSVFs. They were previously stated in [3] and [4].

Definition 1. The local trajectory (orbit) φZ(t, p) of a PSVF given by
(1) is defined as follows:

• For p ∈ Σ+\Σ and p ∈ Σ−\Σ the trajectory is given by φZ(t, p) =
φX(t, p) and φZ(t, p) = φY (t, p) respectively.
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• For p ∈ Σc such that X.f(p) > 0, Y.f(p) > 0 and taking the origin
of time at p, the trajectory is defined as φZ(t, p) = φY (t, p) for t ≤ 0
and φZ(t, p) = φX(t, p) for t ≥ 0. For the case X.f(p) < 0 and
Y.f(p) < 0 the definition is the same reversing time.

• For p ∈ Σe and taking the origin of time at p, the trajectory is defined
as φZ(t, p) = φZΣ(t, p) for t ≤ 0 and φZ(t, p) is either φX(t, p) or
φY (t, p) or φZΣ(t, p) for t ≥ 0. For p ∈ Σs the definition is the same
reversing time.

• For p a regular tangency point and taking the origin of time at p, the
trajectory is defined as φZ(t, p) = φ1(t, p) for t ≤ 0 and φZ(t, p) =
φ2(t, p) for t ≥ 0, where each φ1, φ2 is either φX or φY or φZΣ .

• For p a singular tangency point φZ(t, p) = p for all t ∈ R.

Definition 2. A global trajectory (orbit) ΓZ(t, p0) of Z ∈ Ω passing
through p0 is a union

ΓZ(t, p0) =
⋃

i∈Z

{σi(t, pi); ti ≤ t ≤ ti+1}

of preserving-orientation local trajectories σi(t, pi) satisfying σi(ti+1, pi) =
σi+1(ti+1, pi+1) = pi+1 and ti → ±∞ as i → ±∞. A global trajectory is a
positive (respectively, negative) global trajectory if i ∈ N (respectively,
−i ∈ N) and t0 = 0.

Definition 3. A set A ⊂ R2 is positive-invariant (respectively, negative-
invariant) if for each p ∈ A and all positive global trajectory Γ+

Z (t, p)

(respectively, negative global trajectory Γ−
Z (t, p)) passing through p it holds

Γ+
Z(t, p) ⊂ A (respectively, Γ−

Z (t, p) ⊂ A). A set A ⊂ R2 is invariant for Z
if it is positive and negative-invariant.

Definition 4. Consider Z ∈ Ω. A set M ⊂ R2 is minimal (respectively,
either positive-minimal or negative-minimal) for Z if

(i) M 6= ∅;
(ii) M is compact;
(iii) M is invariant (respectively, either positive-invariant or negative-

invariant) for Z;
(iv) M does not contain proper subset satisfying (i), (ii) and (iii).

In [4] we proved that a positive and negative-minimal set is minimal, but
the converse is false.

In the classical theory about vector fields, a nontrivially recurrent

point is a point that is nonperiodic and belongs to the ω or α-limit set
of itself and a nonwandering point is a point such that each one of its
neighborhoods meets arbitrarily large iterations of itself (see [1]). Both these
concepts can be adapted/extended to PSVFs. However, due to the non
uniqueness of trajectories by points of Σe∩Σs, it is possible the existence of



CLOSING LEMMA FOR PLANAR PIECEWISE SMOOTH VECTOR FIELDS 5

amazing and unexploit behaviors of the trajectories of PSVFs. For example,
in the classical theory about planar vector fields a trivial recurrent point is
either an equilibrium point or belongs to a closed trajectory. For PSVFs
this concept must be adapted since, as described in [3] and [4], there are
PSVFs such that all points in

(2) Λ = {(x, y) ∈ R2 | − 1 ≤ x ≤ 1 and x4/2− x2/2 ≤ y ≤ 1− x2},

belong to a closed trajectory. So, following the classical definition, Λ is a
trivially recurrent set, but the recurrence in Λ is far to be trivial. Moreover,
given a point p0 ∈ Λ there are trajectories passing by p0 with distinct periods
or even trajectories that do not return to p0. In fact, in [4] we shown that
Λ is a nontrivial chaotic minimal set. Inspired on it, we give the following
definitions:

Definition 5. Let Z ∈ Ω and p ∈ V . Then

(i) p is a single periodic point for Z if there exists only one closed
trajectory of Z by it,

(ii) p is a multi periodic point for Z if there exists more than one
closed trajectories of Z by it.

Remark 1. Both kinds of points defined above are predicted in the literature.
Single periodic points are pseudo equilibria or, according to the nomenclature
in [5, 6], belong to canard cycles. Multi periodic points are, for example,
those ones of Λ (see [3, 4]).

Definition 6. Let Z ∈ Ω and p ∈ V . Then

(i) p is a nontrivially recurrent point for Z if it is not a single
periodic point for Z and belongs to the ω or α-limit set of itself,

(ii) p is a nonwandering point for Z if each one of its neighborhoods
meets arbitrarily large iterations of itself.

Remark 2. The concepts in Definition 6 coincide with those ones of smooth
vector fields when Z is smooth. Both single periodic points and multi periodic
points are nonwandering points and only multi periodic points are nontriv-
ially recurrent points.

3. Main Results

This work is part of a general program involving the asymptotic stability
at typical singularities of systems represented by the following equation

(3) u̇ = F (u) + sgn(un)G(u),

where u = (u1, u2, . . . , un) ∈ Rn and F,G : Rn → Rn are smooth mappings.
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Here we analyze the bifurcation diagram and the minimal sets of the
following family of PSVFs:
(4)

Zδ,ǫ(x, y) = (ẋ, ẏ) = 1
2

(
(−1,−2(x− δ) + x2(4x+ 3) + (1 + ǫ)x(−3x− 2))

+sgn(y) (3,−2(x − δ)− x2(4x+ 3)− (1 + ǫ)x(−3x− 2))
)

or, equivalently,
(5)

Zδ,ǫ(x, y) =

{
Xδ(x, y) = (1,−2(x − δ)) if y ≥ 0,
Yǫ(x, y) = (−2, x2(4x+ 3) + (1 + ǫ)x(−3x− 2)) if y ≤ 0,

with δ, ǫ ∈ R arbitrarily small parameters.
We introduce, for the planar PSVFs context, a very exploited subject in

the classical theory about Cr-vector fields (and Cr-diffeomorphisms). We
analyze nontrivially recurrent points and nonwandering points. Perturba-
tions of PSVFs presenting such important objects are considered and we
obtain the following results:

Theorem 7. The bifurcation diagram of System (5) exhibits 9 distinct phase
portraits (see the Bifurcation Diagram in Figure 11).

By means of the analysis done in the proof of Theorem 7 we are able
to obtain all topological types in a neighborhood of Z0,0 given by (5) with
δ = ǫ = 0. Since Z0,0 has a nonwandering set with nontrivial recurrence, we
can state, considering Definitions 5 and 6, that the following two Theorems
are FALSE in the context of PSVFs, for all r ≥ 0:

Theorem 8. (The Classical Closing Lemma for PSVFs) Consider
Z a PSVF presenting a nontrivially recurrent point p0. Then, for every Cr-

neighborhood U of Z, there exists a PSVF Z̃ with single periodic point in
p0.

Theorem 9. (The Improved Closing Lemma for PSVFs) Consider
Z a PSVF presenting a nonwandering nonperiodic point p0. Then, for every

Cr-neighborhood U of Z, there exists a PSVF Z̃ with single periodic point
in p0.

4. Proof of Main Results

4.1. Bifurcations. Our purpose in this section is to obtain a generic un-
folding of the two-parameter family (5), exhibits its bifurcation diagram and
characterize the minimal sets obtained in each choice of parameters. Note
that the family (5) covers all topological types of PSVFs that can be ob-
tained from the bifurcation of the minimal set Λ. Generically, the variation
of the parameters λ and ǫ breaks the simultaneous tangential singularity of
X0 and Y0 at the origin and/or the heteroclinic orbit passing through the
visible tangency point of Y0 (See Figure 2).
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Let us distinguish some important points of the PSVF (5). The vector
field Xδ has a unique tangential singularity situated at p1 = (δ, 0). More-
over, p1 is an invisible tangency. The vector field Yǫ has three tangential
singularities situated at q1 = (1

8
(3ǫ −

√
32 + 32ǫ+ 9ǫ2), 0), q2 = (0, 0) and

q3 = (1
8
(3ǫ −

√
32 + 32ǫ+ 9ǫ2), 0) . Moreover, q1 and q3 are invisible tan-

gencies and q2 is a visible one.
By Lemma 4 of [7] the trajectories of Xδ are vertical translations of the

graph of h(x, δ) = −(x− δ)2, i.e., they are expressed by the curves

(6) f(x, δ, k1) = −(x− δ)2 + k1

with k1 ∈ R. Analogously, the trajectories of Yǫ are vertical translations of
the graph of g(x, ǫ) = x2(x+ 1)(x− (1 + ǫ)), i.e., they are expressed by the
curves

(7) g(x, ǫ, k2) = x2(x+ 1)(x− (1 + ǫ)) + k2

with k2 ∈ R.
By (7) the Yǫ-trajectory by q2 intersects transversally Σ at q0 = (−1, 0)

and q4 = (1+ ǫ, 0). By (6) the Xδ-trajectory by q0 intersects (transversally)
Σ again at p2 = (1 + 2δ, 0) (See Figure 2).

Varying the parameters δ and ǫ we broke two unstable coincidences in Λ.
The simultaneous occurrence of a tangency point of both X and Y (at the
origin) is broken taking δ 6= 0. Note that, if ǫ = 2δ then q4 = p2 and the
heteroclinic global trajectory by q2 persists. So, this global closed trajectory
is broken taking ǫ 6= 2δ. With this in mind, let us proceed the unfolding
of the two-parameter family (5). In order to do it, consider the following
notations:

γ1 the Yǫ-orbit arc q̂4 q0 connecting q4 and q0
γ2 the Xδ-orbit arc q̂0 p2 connecting q0 and p2
γ3 the straight line p2 q4 ⊂ Σ connecting p2 and q4

• Case 1: δ = 0 and ǫ = 0. This case already was studied in [3] and
[4]. Here there exists a nontrivial chaotic minimal set whose measure is not
null. See Figure 2.

q1 p1 q3q0 p2
q4q2

Figure 2. Case 1.
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• Case 2: δ = 0 and ǫ < 0. In this case p1 = q2 and q4 < p2. So, the
coincidence of fold points persists and the heteroclinic global trajectory by
p2 is broken. Let Λ2 be the closure of the region bounded by γ1 ∪ γ2 ∪ γ3.
The set Λ2 is negatively invariant and admits a proper subset Λ′

2 negatively
minimal. It is easy to see that Λ′

2, the closure of the region bounded by
q̂4 q2∪ q2 q5∪ q̂5 q6∪ q̂6 q4, is a negatively minimal set, where q6 = φ−

X(q4)∩Σ

and q5 = φ−
Y (q6) ∩ Σ with φ−

W (x) being the negative W -trajectory by x.
Note that Λ′

2 is neither positively minimal nor minimal. Given, for example,
p0 = (1+(ǫ/2),−ǫ2/4) then there is not a closed trajectory by p0. See Figure
3

q1 p1 q3q0 p2
q4q2

p0

q5
q6

Figure 3. Case 2.

• Case 3: δ = 0 and ǫ > 0. In this case p1 = q2 and q4 > p2. So, the
coincidence of fold points persists and the heteroclinic global trajectory by
q4 is broken. Let Λ3 be the closure of the region bounded by γ1 ∪ γ2 ∪ γ3.
The set Λ3 is positively invariant and admits a proper subset Λ′

3 positively
minimal. It is easy to see that Λ′

3, the closure of the region bounded by
q̂2 q0 ∪ γ2 ∪ p̂2 q7 ∪ q7 q2, is a positively minimal set, where q7 = φ+

Y (p2) ∩ Σ

with φ+
W (x) being the positive W -trajectory by x. Note that Λ′

3 is neither
negatively minimal nor minimal. Given, for example, p0 = (ǫ,−ǫ2) then
there is not a closed trajectory by p0. See Figure 4.

q1 p1 q3q0 p2
q4q2 p0

q7

Figure 4. Case 3.

• Case 4: δ < 0 and ǫ = δ/2. In this case p1 < q2 and q4 = p2. So, the
coincidence of fold points is broken and the heteroclinic global trajectory by
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q4 = p2 persists. Let Λ4 be the closure of the region bounded by γ1 ∪ γ2.
According to Proposition 1 of [4], the set Λ4 is minimal even if there exists
a repeller pseudo equilibrium p3 = (a, 0) between q1 and p1, where

(8) a = δ/8 + ((96 − 48δ − 9δ2)/(24
3
√
3Kδ))− (Kδ/(8

3
√
9))

and Kδ is given by

3

√
−9δ(240 + δ(8 + δ)) + 8

√
3
√

512 − 768δ + 24540δ2 + 1700δ3 + 207δ4.

Given, for example, p0 = (0,−δ) then there is not a closed trajectory by p0.
In fact, given any p0 ∈ Interior(Λ4) then there is not a closed trajectory by
p0 because the ω-limit (respectively, α-limit) set of p0 is ∂Λ4 (respectively,
p3), with ∂B being the boundary of an arbitrary set B. See Figure 5.

q1 p1 q3q0 p2
q4q2

p0

p3

Figure 5. Case 4.

• Case 5: δ > 0 and ǫ = δ/2. In this case p1 > q2 and q4 = p2. So, the
coincidence of fold points is broken and the heteroclinic global trajectory by
q4 = p2 persists. Let Λ5 be the closure of the region bounded by γ1 ∪ γ2.
Analogously to the previous case, the set Λ5 is minimal even if there exists
an attractor pseudo equilibrium p3 = (a, 0) between p1 and q3, where a is
given by (8). Given, for example, p0 = (0, δ) then there is not a closed
trajectory by p0. In fact, given any p0 ∈ Interior(Λ5) then there is not a
closed trajectory by p0 because the ω-limit (respectively, α-limit) set of p0
is p3 (respectively, ∂Λ5). See Figure 6.

q1 p1 q3q0 p2
q4q2

p0
q5 p3

Figure 6. Case 5.
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Cases 1−5 above represent structural unstable behaviors. The Cases 6−9
below represent structural stable behaviors.

• Case 6: δ < 0 and ǫ < δ/2. In this case p1 < q2 and q4 < p2. So, the
coincidence of fold points and the heteroclinic global trajectory by q2 are
broken. Let Λ6 be the closure of the region bounded by γ1 ∪ γ2 ∪ γ3. The
set Λ6 is negatively invariant but it is not negatively minimal since there
exists a negatively invariant subset {p3 = (b, 0)} between q1 and p1, where
the expression of b is even more complicated than that one in (8) and we
will omit it. The pseudo equilibrium p3 is a repeller. Given, for example,
p0 = (0,−δ) then there is not a closed trajectory by p0. In fact, given any
p0 ∈ Interior(Λ6) then there is not a closed trajectory by p0 because the ω-
limit (respectively, α-limit) set of p0 is infinity (respectively, p3). See Figure
7.

q1 p1 q3q0 p2
q4q2

p0

p3

Figure 7. Case 6.

• Case 7: δ < 0 and ǫ > δ/2. In this case p1 < q2 and q4 > p2. So,
the coincidence of fold points and the heteroclinic global trajectory by q4
are broken. Let Λ7 be the closure of the region bounded by γ1 ∪ γ2 ∪ γ3.
The set Λ7 is positively invariant but it is not positively minimal since there
exists a positively invariant subset Λ′

7 defined as the closure of the region
bounded by Υ7 = q̂2 q0∪γ2∪ p̂2 q7∪ q7 q2. Note that Λ

′
7 is neither negatively

minimal nor minimal. The cycle Υ7 is attractor and has a repeller pseudo
equilibrium p3 = (b, 0) at its interior. Given, for example, p0 = (0,−δ) then
there is not a closed trajectory by p0. In fact, given any p0 ∈ Interior(Λ′

7)
then there is not a closed trajectory by p0 because the ω-limit (respectively,
α-limit) set of p0 is Υ7 (respectively, p3). Moreover, in this case there are
another amazing phenomenon characterized by a stable connection between
a pseudo equilibrium and a cycle. See Figure 8.

• Case 8: δ > 0 and ǫ < δ/2. In this case p1 > q2 and q4 < p2. So, the
coincidence of fold points and the heteroclinic global trajectory by p2 are
broken. Let Λ8 be the closure of the region bounded by γ1 ∪ γ2 ∪ γ3. The
set Λ8 is negatively invariant but it is not negatively minimal since there
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q1 p1 q3q0 p2
q4q2

p0

p3

Figure 8. Case 7.

exists a negatively invariant subset Λ′
8, defined as the closure of the region

bounded by Υ8 = q̂4 q2 ∪ q2 q5 ∪ q̂5 q6 ∪ q̂6 q4. The cycle Υ8 is repeller and
has an attractor pseudo equilibrium p3 = (b, 0) at its interior. Given, for
example, p0 = (0, δ) then there is not a closed trajectory by p0. In fact, given
any p0 ∈ Interior(Λ′

8) then there is not a closed trajectory by p0 because
the ω-limit (respectively, α-limit) set of p0 is p3 (respectively, Υ8). Again,
we note a stable connection between a pseudo equilibrium and a cycle. See
Figure 9.

q1 p1 q3q0 p2
q4q2

p0

q5
q6

p3

Figure 9. Case 8.

• Case 9: δ > 0 and ǫ > δ/2. In this case p1 > q2 and q4 > p2. So,
the coincidence of fold points and the heteroclinic global trajectory by q4
are broken. Let Λ9 be the closure of the region bounded by γ1 ∪ γ2 ∪ γ3.
The set Λ9 is positively invariant but it is not positively minimal since there
exists a positively invariant subset {p3 = (b, 0)} between p1 and q3. The
pseudo equilibrium p3 is an attractor. Given, for example, p0 = (0, δ) then
there is not a closed trajectory by p0. In fact, given any p0 ∈ Interior(Λ9)
then there is not a closed trajectory by p0 because the ω-limit (respectively,
α-limit) set of p0 is p3 (respectively, ∞). See Figure 10.

The bifurcation diagram of (5) is illustrated at Figure 11.
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q1 p1 q3q0 p2
q4q2

p0
p3

Figure 10. Case 9.

ǫ = δ
2

δ

ǫ

Figure 11. Bifurcation Diagram.

4.2. Closing Lemma. There are several versions of the Closing Lemma in
the literature (for a non exhaustive list see [1]). The most popular of them
are the following:

The Classical Cr Closing Lemma: Consider X a Cr-vector field pre-
senting a nontrivially recurrent point x0. Then, for every Cr-neighborhood
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U of X in the set χ of all Cr-vector fields, there exists a Cr-vector field

X̃ ∈ χ such that x0 is a periodic point of X̃.

The Improved Cr Closing Lemma: Consider X a Cr-vector field pre-
senting a nonwandering nonperiodic point x0. Then, for every Cr-neighbor-
hood U of X in the set χ of all Cr-vector fields, there exists a Cr-vector field

X̃ ∈ χ such that x0 is a periodic point of X̃.

In this section we study both the previous Closing Lemmas in the context
of PSVFs and present two points of view for each one of them. In the first
one we are looking for single periodic points and in the other one we are
searching multi periodic points.

Let us prove now that an analogous to the Classical (respectively, Im-
proved) Closing Lemma is false when we are searching for single periodic
points. In fact, consider Z = Z0,ǫ given by (5) with δ = 0. Take p0 =
(x0, y0) ∈ Σ+, with y0 sufficiently small. Since there exists a periodic orbit
by p0, in order to have p0 a nonperiodic point of some PSVF W we consider
W = Z|V/{w0}, where w0 = (−

√
x20 + (y0/2), y0/2). It is easy to see that

w0 belongs to φ−
X(p0), w0 is placed between Σe and p0 and p0 is a nontriv-

ially recurrent (respectively, nonwandering nonperiodic) point of Z|V/{w0}.
See Figure 12. Moreover, since we are excluding w0, there is not a closed
trajectory of Z|V/{w0} through p0.

Consider now a small perturbation of Z|V/{w0}. According to Section 4.1,
all perturbations breaking the simultaneous tangency point at the origin
do not produce single periodic orbits. So, the last expectancy is that a
single periodic point appears in a perturbation that keeps the simultaneous
tangency point. In this context, let s0 ∈ ŵ0 p0, where ŵ0 p0 is the arc of
trajectory connecting w0 and p0. So, a classical Cr-surgery (or, according
to [1], pg 1657, a motion of a point into s0 in the δ-core of a ball) in a small
neighborhood of s0 can produces a closed trajectory Γ0 through p0. Let us
construct such surgery.

4.2.1. Construction of the Cr-surgery: Consider W a small neighborhood of
s1 ∈ ŵ0 s0 and s2 6∈ φ−

X(s0) such that s2 ∈ W. Suppose that we are able
to connect s2 and s0 by an arc of trajectory γ4 in such a way that the new
trajectory through p0 is a Cr-curve defined in Σ+ (if such a construction is
not possible then it is straightforward that the Theorems 8 and 9 are false).
See Figure 12. Take l1 = φ−

X(s2)∩Σe and l2 6= l1 placed at the straight line

segment l1 q2. So, while Γ0 = p̂0 l1∪ l̂1 s2∪γ4∪ ŝ0 p0 has period T0, it is easy

to construct a closed trajectory Γ1 = p̂0 l2 ∪ l̂2 q2 ∪ q̂2 l1 ∪ l̂1 s2 ∪ γ4 ∪ ŝ0 p0
with period T1 > T0 (see Figure 12). So, p0 is not a single periodic point.
This proves that Theorem 8 (respectively, Theorem 9) is false.

4.2.2. Forthcoming papers: Consider the following conjectures:
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Conjecture 1. (The Classical Closing Lemma for multi periodic
points of PSVFs) Consider Z a PSVF presenting a nontrivially recurrent

point p0. Then, for every Cr-neighborhood U of Z, there exists a PSVF Z̃
with multi periodic point in p0.

Conjecture 2. (The Improved Closing Lemma for multi periodic
points of PSVFs) Consider Z a PSVF presenting a nonwandering non-
periodic point p0. Then, for every Cr-neighborhood U of Z, there exists a

PSVF Z̃ with multi periodic point in p0.

Note that the previous argument does not produces a contradiction with
Conjectures 1 and 2. So, these conjectures can be true. However, by now,
we are not able to construct explicitly neither the Cr-surgery producing
the closed trajectory Γ0 nor a general argument that works well for every
nontrivial recurrent or nonwandering nonperiodic point. We hope to prove
these results in a forthcoming paper.

l1

s0 Γ0
w0

p0
Cr-surgery

Figure 12. Single pe-
riodic point p0.

l1

s0
Γ1w0

p0

l2

Cr-surgery

Figure 13. Multi pe-
riodic point p0.

5. Conclusion

In this paper we are concerned with a global analysis of PSVFs in R2 in the
sense of obtaining periodic points in PSVFs that are small perturbations of a
PSVF presenting nontrivially recurrent points or nonwandering points. We
obtain a PSVF Z0,0, given in (5) with δ = ǫ = 0, presenting a nonwandering
set Λ with nontrivial recurrence (in [3] and [4] we prove that Λ is a non trivial
chaotic minimal set of Z0,0). We exhibit all topological types around Z0,0.
Between these topological types we highlight a stable connection between
a pseudo equilibrium and a cycle (Cases 7 and 8 of Subsection 4.1) and
cases where a nonwandering/nontrivial non null measure set persists after
a perturbation (Cases 2 and 3 of Subsection 4.1). Also we conclude that
an analogous to the Classical and the Improved Closing Lemmas can not
be obtained for PSVFs in the sense of finding single periodic points, but
they can be possible in the sense of finding multi periodic points. We intent
perform this last issue in a forthcoming paper.
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