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Abstract. Despite of the fact that piecewise smooth vector fields have been
used to model a large range of physical phenomena and other applications,
there exists nowadays an evident lack in a formal approach about minimal and
chaotic sets inherent to these kind of dynamical systems. Here we state some
new terminology and results that give a final conclusion about the connection
between both concepts on bi-dimensional spaces. Moreover, since there is not
uniqueness of trajectories for piecewise smooth vector fields, we show that the
orientation induced on the trajectories plays an essential role at the qualitative
analysis of these objects.

1. Introduction

Since the outstanding work of Poincaré (see [23]) until nowadays the theory of
dynamical systems have become increasingly important in physics and mathematics
and today it involves not only geometrical and experimental approaches but also
topological, analytical and algebraic ones. Indeed, a today well accepted dissolution
of dynamical systems theory highlights discrete, continuous and ergodic aspects of
the maps and sets involved in the study of a given problem. Of course, there are
intersections between each approach although a general theory taking into account
general aspects seems to be far away to be reached. In particular, inside the contin-
uous approach has emerged a new theory which takes into account not smooth but
piecewise smooth vector fields (PSVFs, for short), that is, vector fields which are not
smooth everywhere but non-smooth or even discontinuous in some regions of the
geometrical space. Such special systems have found several applications in applied
sciences (see the books [1] and [24] and references therein). In fact, as stated in
[9], piecewise smooth phenomena occur in physical systems that operate according
to distinct kinds of behavior. The transition from one kind of behavior to another
one can be idealized as a discrete and instantaneous transition. For example, a
non exhaustive list of applications of such theory involves mechanical systems (see
[4], [12], [19]), electrical circuits (see [2, 18]), the stick-slip process (see [15]), relay
systems (see [3] and [16]) and control theory (see [11]). Since the transition of one
behavior to another one is faster than the dynamic of the system, the transition
can be modeled as instantaneous. For example, the physical characteristics of a
diode or the mathematical model of dry friction in mechanical systems, switching
between the sliding mode (slip) and the grip (stick).
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PSVFs have attracted the attention from the mathematical community just a
few decades ago, having as one of the landmarks the works of Teixeira concerning
manifolds with boundary (see [25]). Later, Filippov (see [14]) stated several aspects
regarding the methodology of PSVFs. In summary, PSVFs are objects defined not
by a unique system but two or more, each one defined in a region of the space
which is separated by a codimension one manifold currently called switching or
discontinuity manifold. Moreover, it is supposed that under this manifold we have
defined one or more vector fields (the adjacent ones), so apart from special cases
the trajectory of a PSVF is not unique. Indeed, it is basically the fundamental
feature of PSVFs which leads to a more complex and abstract theory than that one
developed for smooth or continuous dynamical systems.

A question that arise concerning planar PSVFs regards its discrete or ergodic
aspects and, surely, the validity of results coming from the continuous context into
this particular scenario. In the last case, we should mention, for instance, the
work of Sotomayor and Machado (see [20]) which provide the conditions in order
to assure the validity of the acclaimed Peixoto Theorem for planar PSVFs (see
[22]). We also mention [5] where the authors provide a version of the classical
Poincaré-Bendixson Theorem in the planar PSVF scenario. On the other hand,
regarding ergodic properties of planar PSVF, in [5] the authors also provide an
example of a bi-dimensional set which is a positive measure non-trivial minimal set
for a planar PSVF, which means that such objects may occur by suppressing the
smoothness of the system. Indeed, as far as the authors know, it was one of the first
works connecting concepts coming from the ergodic theory of dynamical systems
to PSVFs.

Here we observe the importance of take into account not only the switching
manifold but also the orientation of the trajectories on the time. Indeed, the present
work is the continuation of these two previous works [5, 6] and goes forward in
the sense of establish the concepts of the ergodic theory of dynamical systems for
PSVFs. Other results following the same aim can be found in [8] and [13], as well
as the the works [10] and [17].

More specifically, in this paper we introduce the concept of orientable chaos
and observe the presence of some sets which are orientable chaotic in the sense of
Definition 9 but not properly chaotic. It stress the necessity of taking into account
the orientation of the objects, as commented before. Moreover, we provided a
sufficient condition ir order to a non null measure compact invariant set be minimal
in terms of it chaoticity, which is the converse of the Theorem 14 of [6]. With this,
we establish a final connection between minimal sets and chaotic PSVFs. So, from
the results of this paper one should note that important phenomena occur by taking
into account sets having positive Lebesgue measure when studying ergodic aspects
of PSVFs, which find an important place for some areas of physics as statistical
physics, apart from ergodic theory.

Our main results are the following:

Theorem 1 A PSVF Z is chaotic on W if, and only if, Z is positive chaotic and
negative chaotic on W .

The next theorem says, among other things, that Theorem 1 only makes sense if
med(W ) > 0 where med(·) is the Lebesgue measure. We have the following result:
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Theorem 2 Let K ⊂ R2 be a compact invariant set and Z a PSVF. If med(K) = 0
then Z is not chaotic on K.

Theorem 3 If Z is chaotic on W and med(W ) > 0 then W is positive minimal
and negative minimal.

Other important result, which actually is a corollary of Theorem 3 proves that
if med(W ) > 0 and Z is chaotic on W then W is minimal for Z (see Corollary 1).

Summarizing, let W be a non null measure set and Z a PSVF defined in W .
Then, according to Theorem 14 of [6] and Theorems 1 and 3 we get:

Z is pos. and
neg. chaotic on W

⇔
Z is chaotic

on W
⇔

W is pos. and
neg. min. for Z

⇒
W is min.

for Z

Some particular conclusions we get from the results are the following. First, we
note that although the chaoticity of a PSVF Z under a set W implies that W is
minimal for Z, the converse is false according to Example 2 of [6]. Also, if Z is
positive (resp. negative) chaotic on W then W is positive (resp. negative) minimal
for Z (see Corollary 3), but the converse is false since we can exhibit positive (resp.
negative) minimal sets that are not positive (resp. negative) chaotic (see Example
1). Other considerations and results are presented timely throughout the text.

The paper is organized as follow: In Section 2 we give some standard definitions
about PSVFs theory. In Section 3 we setting the problem, give specific definitions
for our context and illustrate the theory with some examples. In Section 4 we prove
the main results and consequences of them.

2. Preliminaries

Now we formalize some definitions and conventions about PSVFs that pave the
way in order to prove the main results. Those results are kind standard and can
be find in papers like [5, 6, 8] among others.

Let V be an arbitrarily small neighborhood of 0 ∈ R2 and consider a codimension
one manifold Σ of R2 given by Σ = f−1(0), where f : V → R is a smooth function
having 0 ∈ R as a regular value (i.e. ∇f(p) 6= 0, for any p ∈ f−1(0)). The switching
manifold Σ is the separating boundary of the regions Σ+ = {q ∈ V | f(q) ≥ 0} and
Σ− = {q ∈ V | f(q) ≤ 0}. Observe that we can assume, locally around the origin of
R2, that f(x, y) = y.

Designate by χ the space of Cr-vector fields on V ⊂ R2, with r ≥ 1 large enough
for our purposes. Call Ω the space of vector fields Z : V → R2 such that

(1) Z(x, y) =

{
X(x, y), for (x, y) ∈ Σ+,
Y (x, y), for (x, y) ∈ Σ−,

where X = (X1, X2), Y = (Y1, Y2) ∈ χ. Consider on Ω the product topology. The
trajectories of Z are solutions of q̇ = Z(q) and we accept it to be multi-valued at
points of Σ. The basic results of differential equations in this context were stated
by Filippov in [14], that we summarize next. Indeed, consider the Lie derivatives

X.f(p) = 〈∇f(p), X(p)〉 and X i.f(p) =
〈
∇X i−1.f(p), X(p)

〉
, i ≥ 2

where 〈., .〉 is the usual inner product in R2.

We distinguish the following regions on the discontinuity set Σ:
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(i) Σc ⊆ Σ is the sewing region if (X.f)(Y.f) > 0 on Σc .
(ii) Σe ⊆ Σ is the escaping region if (X.f) > 0 and (Y.f) < 0 on Σe.
(iii) Σs ⊆ Σ is the sliding region if (X.f) < 0 and (Y.f) > 0 on Σs.

The sliding vector field associated to Z ∈ Ω is the vector field Zs tangent to Σs

and defined at q ∈ Σs by Zs(q) = m − q with m being the point of the segment
joining q +X(q) and q + Y (q) such that m− q is tangent to Σs (see Figure 1). It
is clear that if q ∈ Σs then q ∈ Σe for (−Z) and then we can define the escaping
vector field on Σe associated to Z by Ze = −(−Z)s. In what follows we use the
notation ZΣ for both cases. In our pictures we represent the dynamics of ZΣ by
double arrows.

q

q + Y (q)

q +X(q)

ZΣ(q)

Σs

Figure 1. Filippov’s convention.

We say that q ∈ Σ is a Σ-regular point if

(i) (X.f(q))(Y.f(q)) > 0 or
(ii) (X.f(q))(Y.f(q)) < 0 and ZΣ(q) 6= 0 (i.e., q ∈ Σe ∪ Σs and it is not an

equilibrium point of ZΣ).

The points of Σ which are not Σ-regular are called Σ-singular. We distinguish
two subsets in the set of Σ-singular points: Σt and Σp. Any q ∈ Σp is called
a pseudo-equilibrium of Z and it is characterized by ZΣ(q) = 0. Any q ∈ Σt is
called a tangential singularity (or also tangency point) and it is characterized by
(X.f(q))(Y.f(q)) = 0 (q is a tangent contact point between the trajectories of X
and/or Y with Σ).

Given a tangential singularity q, if there exist an orbit of the vector field X |Σ+

(respec. Y |Σ−) reaching q in a finite time, then such tangency is called a visible
tangency for X (respec. Y ); otherwise we call q an invisible tangency for X (respec.
Y ). In addition, a tangential singularity q is singular if q is a invisible tangency for
both X and Y . On the other hand, a tangential singularity q is regular if it is not
singular.

In what follows we present the definition of local and global trajectories for
PSVFs. They were previously stated in [5] and [6].

Definition 1. The local trajectory (orbit) φZ(t, p) of a PSVF given by (1) is
defined as follows:

• For p ∈ Σ+\Σ and p ∈ Σ−\Σ the trajectory is given by φZ(t, p) = φX(t, p)
and φZ(t, p) = φY (t, p) respectively.

• For p ∈ Σc such that X.f(p) > 0, Y.f(p) > 0 and taking the origin of
time at p, the trajectory is defined as φZ(t, p) = φY (t, p) for t ≤ 0 and
φZ(t, p) = φX(t, p) for t ≥ 0. For the case X.f(p) < 0 and Y.f(p) < 0 the
definition is the same reversing time.
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• For p ∈ Σe and taking the origin of time at p, the trajectory is defined as
φZ(t, p) = φZΣ(t, p) for t ≤ 0 and φZ(t, p) is either φX(t, p) or φY (t, p) or
φZΣ(t, p) for t ≥ 0. For p ∈ Σs the definition is the same reversing time.

• For p a regular tangency point and taking the origin of time at p, the tra-
jectory is defined as φZ(t, p) = φ1(t, p) for t ≤ 0 and φZ(t, p) = φ2(t, p) for
t ≥ 0, where each φ1, φ2 is either φX or φY or φZΣ .

• For p a singular tangency point φZ(t, p) = p for all t ∈ R.

Definition 2. A global trajectory (orbit) ΓZ(t, p0) of Z ∈ Ω passing through p0
is a union

ΓZ(t, p0) =
⋃

i∈Z

{σi(t, pi); ti ≤ t ≤ ti+1}

of preserving-orientation local trajectories σi(t, pi) satisfying σi(ti+1, pi) = σi+1(ti+1, pi+1) =
pi+1 and ti → ±∞ as i → ±∞. A global trajectory Γ+

Z is a positive (respectively,

Γ−

Z negative) global trajectory if i ∈ N (respectively, −i ∈ N) and t0 = 0.

Definition 3. A set A ⊂ R2 is positive invariant (respectively, negative in-
variant) if for each p ∈ A and all positive global trajectory Γ+

Z (t, p) (respectively,

negative global trajectory Γ−

Z (t, p)) passing through p it holds Γ+
Z (t, p) ⊂ A (respec-

tively, Γ−

Z (t, p) ⊂ A). A set A ⊂ R2 is invariant for Z if it is positive and negative
invariant.

Definition 4. Consider Z ∈ Ω. A set M ⊂ R2 is minimal (respectively, either
positive minimal or negative minimal) for Z if

(i) M 6= ∅;
(ii) M is compact;
(iii) M is invariant (respectively, either positive invariant or negative invariant)

for Z;
(iv) M does not contain proper subset satisfying (i), (ii) and (iii).

3. Orientable chaotic PSVFs

3.1. Setting the problem. One of the most important facts concerning PSVFs
is the orientation of its trajectories. Indeed, it is very important, for instance, for
the concept of invariance or for define the flow associated to the Filippov vector
field. Of course, in the smooth theory of vector fields this distinction does not play
an important role since we have uniqueness of trajectories.

In this direction, we should verify if such distinction is also necessary when defin-
ing chaotic PSVFs. Indeed, as we will see later in this section, chaotic systems does
not play the same role by considering positive and negative times. Nevertheless, in
this section we present examples of chaotic systems either for positive or negative
trajectories which are not chaotic systems. As far as the authors know, this is the
first time that such approach is presented in the literature about PSVFs, although
the concept of chaos in such systems have been discussed before, for instance, in
[6] and [10].

Of course, the definition of chaos contemplates topological transitivity and sensi-
tivity to initial conditions. For this reason, we must also introduce the definition of
transitivity and sensible dependence in their orientable versions. Next definitions
take into account the previous discussion.
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3.2. Definitions concerning chaotic aspects.

Definition 5. System (1) is topologically transitive on an invariant set W
if for every pair of nonempty, open sets U and V in W , there exist q+, q− ∈ U ,
Γ+
Z (., q

+),Γ−

Z (., q
−) global trajectories and t+0 > 0 > t−0 such that

Γ+
Z (t

+
0 , q

+) and Γ−

Z (t
−

0 , q
−) ∈ V .

Considering either the positive or the negative orientation for the trajectories of
Z, we get:

Definition 6. System (1) is topologically positive transitive (respectively, topo-
logically negative transitive) on a positive invariant (respectively, negative in-
variant) set W if for every pair of nonempty, open sets U and V in W , there exist
q ∈ U , Γ+

Z (t, q) a positive (respectively, Γ−

Z (t, q) a negative) global trajectory and

t0 > 0 (resp., t0 < 0) such that Γ+
Z (t0, q) ∈ V (resp., Γ−

Z (t0, q) ∈ V ).

Analogously to the definition of topologically transitive systems, the definition
of sensitive dependence for PSVFs should be as follows. Note that there is an
important difference concerning the invariance of the sets: they must be positive
or negative invariant when defining concepts taking into account their orientation.

Definition 7. System (1) exhibits sensitive dependence on a compact invariant
set W if there is a fixed r > 0 satisfying r < diam(W ) such that for each x ∈ W
and ε > 0 there exist y+, y− ∈ Bε(x) ∩W and global trajectories Γ+

x , Γ
−

x , Γ
+
y+ and

Γ−

y−
passing through x, y+ and y−, respectively, satisfying

dH(Γ+
x ,Γ

+
y+) = sup

a∈Γ
+
x ,b∈Γ

+

y+

d(a, b) > r,

and

dH(Γ−

x ,Γ
−

y−
) = sup

a∈Γ−

x ,b∈Γ−

y−

d(a, b) > r,

where diam(W ) is the diameter of W and d is the Euclidean distance.

Associated to the previous definition we give the next one, where the orientation
of the trajectories of Z also is considered:

Definition 8. System (1) exhibits sensitive positive dependence (resp., sen-
sitive negative dependence) on a compact positive invariant (resp., negative
invariant) set W if there is a fixed r > 0 satisfying r < diam(W ) such that for each
x ∈ W and ε > 0 there exist a y ∈ Bε(x) ∩W and positive (resp., negative) global
trajectories Γ+

x and Γ+
y (resp., Γ−

x and Γ−

y ) passing through x and y, respectively,
satisfying

dH(Γ+
x ,Γ

+
y ) = sup

a∈Γ+
x ,b∈Γ+

y

d(a, b) > r

( resp., dH(Γ−

x ,Γ
−

y ) = sup
a∈Γ

−

x ,b∈Γ
−

y

d(a, b) > r ),

where diam(W ) is the diameter of W and d is the Euclidean distance.

In this paper we will consider the notations stated in the following table.
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Table of Abbreviations

Topologically transitive TT
Topologically positive transitive TPT
Topologically negative transitive TNT

Sensitive dependence SD
Sensitive positive dependence SPD
Sensitive negative dependence SND

We should mention, as observed in [10], that Definitions 5 and 7 coincide with
the definitions of topological transitivity and sensible dependence of smooth vector
fields for single-valued flows, so these definitions are natural extension for a set-
valued flow.

Following we introduce the definition of a chaos and orientable chaos in the
piecewise smooth context:

Definition 9. System (1) is chaotic (resp., either positive chaotic or negative
chaotic) on a compact invariant (resp., either positive invariant or negative inva-
riant) set W if it is TT and exhibits SD (resp., either TPT and exhibits SPD or
TNT and exhibits SND) on W .

3.3. Examples of orientable chaotic sets.

3.3.1. Orientable chaotic sets that are not chaotic: Consider the PSVF:

(2)
Zǫ(x, y) = (ẋ, ẏ) = 1

2

(
(−1,−2x+ x2(4x+ 3) + (1 + ǫ)x(−3x− 2))

+sgn(y) (3,−2x− x2(4x+ 3)− (1 + ǫ)x(−3x− 2))
)

or, equivalently,

(3) Zǫ(x, y) =

{
X(x, y) = (1,−2x) if y ≥ 0,
Yǫ(x, y) = (−2, x2(4x+ 3) + (1 + ǫ)x(−3x− 2)) if y ≤ 0,

with ǫ ∈ R an arbitrarily small parameter. In [6] the authors proved that Z0 has a
chaotic set given (see Figure 2) by

(4) Λ = {(x, y) ∈ R2 | − 1 ≤ x ≤ 1 and x4/2− x2/2 ≤ y ≤ 1− x2}.

Σe ΣsΣc Σc
Σ

−1 1

Figure 2. Chaotic set Λ.

Taking ǫ < 0 (resp., ǫ > 0) in (3) the PSVF Zǫ has a negative chaotic (resp.,

positive chaotic) set Λ̃, see the shadowed region in Figure 3 (resp., Figure 4),

bounded by p̂1 p2 ∪ p̂2 p3 ∪ p̂3 p4 ∪ p̂4 p1, where â b is the orbit-arc connecting the
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points a and b. Despite of this, when ǫ 6= 0, Λ̃ is not a chaotic set. This happens

because Λ̃ is not an invariant set; it is only negative invariant (resp., positive
invariant).

p1p2

p3p4

Figure 3. Negative

chaotic set Λ̃.

p1p2
p3

p4

Figure 4. Positive
chaotic set Λ̃.

Remark 1. The previous paragraph remains true if we change the word chaotic by
the word minimal. A complete bifurcation analysis of the family (3) is given in [8].

3.3.2. Orientable chaotic sets and orientable minimality: The sets given in
Figures 3 and 4 are orientable chaotic and orientable minimal sets. Despite of this,
it is easy to exhibit examples of orientable minimal sets that are not orientable
chaotic.

Example 1. Consider the PSVF

Z(x, y) = (X(x, y), Y (x, y)) = ((−1, 3x2 − 3), (1,−(9/4) + 3(−1 + x)x)).

Such PSVF has a periodic orbit (see Figure 5) wich is a negative minimal set.
However, Z is not a negative chaotic PSVF on the periodic orbit since it does not
present SPD.

− 3
2 − 1

2

−1 1

3
2

2

Figure 5. Periodic orbit (for positive time)

Observe that, in the last example the Lebesgue measure of the periodic orbit
is null. However, it is not difficult to exhibit a minimal sets W for some PSVF,
with med(W ) > 0, in such way that W is neither positive chaotic nor negative
chaotic. Indeed, Example 2 of [6] satisfies these properties. In other words, in
general minimality does not imply chaoticity. The converse, on the other hand, is
true, as proved in Section 4.
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4. Main Results

In this Section we present the main results of the paper.

Proposition 1. Let Z be a PSVF. The following statements hold

(a) Z is TT on W if, and only if, Z is simultaneously TPT and TNT on W ;
(b) Z exhibits SD on W if, and only if, Z exhibits simultaneously SPD and

SND on W ;

An analogous of Proposition 1 does not hold for minimal sets. Indeed, while sets
which are both positive and negative minimal are also minimal, the converse is not
true. Again, Example 2 of [6] exemplify this situation.

Following we prove Proposition 1.

Proof of Proposition 1. We start proving item (a). First, assume that Z is TT
on W and consider disjoint open sets U and V contained in W . Consequently,
there exist points p+ and p− in U , times t+ > 0 and t− > 0 and trajectories Γ+

and Γ− satisfying Γ+(t+, p+) ∈ V and Γ−(−t−, p−) ∈ V , where Γ+ and Γ− are
positive and negative trajectories passing, respectively, through the points p+ and
p−. Moreover, according to Remark 1 of [6], W is simultaneously positive and
negative invariant. Consequently U and V can be connected through the positive
trajectory Γ+ starting on p+ after a time t+, that is, Z is TPT on W . Analogously
Z is TNT on W .

The converse is straightforward according to Definitions 5 e 6.

The proof of the item (b) follow exactly the same ideas exposed at the proof of
item (a). �

Proposition 1 allows us to prove the following result.

Theorem 1. A PSVF Z is chaotic on W if, and only if, Z is positive chaotic and
negative chaotic on W .

Proof of Theorem 1. First, assume that Z is chaotic on W . By Definition 9, Z is
TT on W and exhibits SD on W . Thus, by Proposition 1, Z is simultaneously
TPT and TNT on W and exhibits both SPD and SND on W . Then, using again
Definition 9, we obtain that Z is positive chaotic and negative chaotic on W . The
converse is straightforward. �

The most part of the results obtained in [5] and [6] takes into account sets having
positive Lebesgue measure. Indeed, in almost every approach concerning ergodic
aspects of PSVFs, this is the interesting case. We cite, for instance, the existence
of non-trivial minimal sets and planar chaotic PSVFs, as shown in the papers cited
previously. Indeed, as states the next theorem, there is no sense in considering
chaotic systems with null Lebesgue measure.

Theorem 2. Let K ⊂ R2 be a compact invariant set and Z a PSVF. If med(K) = 0
then Z is not chaotic on K.

Proof. First, suppose that K ∩ Σ ⊂ Σc and take p ∈ K. Consequently, the flow

associated to Z, namely φZ
t (p) with φZ

0 (p) = p, satisfies φZ
t (p)

t→∞
−−−→ Ω ∈ ω(p) ⊂ K,

since K is compact. Here ω(p) denotes the ω-limit set of the point p. Thus, by
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using Poincaré Bendixson Theorem for PSVFs (see [5]) we get that Ω is a (pseudo-
)equilibrium, a (pseudo-)cycle or a (pseudo-)graph. In any case, it is trivial to see
that Z is not chaotic on K since Z does not exhibits SD on K.

Now consider the case where K ∩ (Σs ∪ Σe) 6= ∅ and suppose that there exist a
PSVF Z which is chaotic on K. Take p ∈ K ∩ (Σs ∪ Σe) and Vp ⊂ R2 a neighbor-
hood of p. We will show that K is not invariant, more specifically, that there exist a
trajectory φ̃t passing through p and t∗ ∈ R such that φt∗(p̃) = p with p̃ 6∈ K. Indeed,
consider the sets V +

p = {φ+
t (p) ∩ V |φ+

t is the positive trajectory of Z passing

through q} and V −

p defined analogously for the negative trajectory. Observe that

med(V +
p ∪ V −

p ) > 0, since using the Definition 1, in this case the preimage of

K∩ (Σs∪Σe) contain an open set U ⊂ Vp satisfying 0 < med(U) < med(V +
p ∪V −

p ).

Consequently there exist a point q ∈ V +
p ∪ V −

p such that q 6∈ K, because otherwise

V +
p ∪ V −

p ⊂ K and then med(K) > med(V +
p ∪ V −

p ) > 0 (see Figure 6).

Vp

p

p̃

Σs

U

Figure 6. The neighborhood Vp of p. The filled region correspond to
V −

p , and in this case V +
p = Vp∩Σ. Observe that it has positive Lebesgue

measure. The trajectory in red correspond to φ̃t.

�

We observe that Theorem 2 does not make sense if Z is smooth, once there is
no bi-dimensional smooth chaotic flow.

Before announce Theorem 3 let us prove the following lemma thet will be useful
in its proof, besides being elegant itself.

Lemma 1. Let Z a chaotic PSVF on W . Then Z is chaotic on every compact

invariant proper subset W̃ ⊂ W .

Proof. Suppose that Z is not chaotic on W̃ . So, by Definition 9 we get that Z is

not TT or does not presents SD on W̃ . In any case, since W̃ ⊂ W we also get
that Z is not TT or does not presents SD on W . This is a contradiction with the
hypothesis. �

In [6], among other results, the authors prove that, if a compact invariant set W
satisfying med(W ) > 0 is simultaneously positive and negative minimal for a PSVF
Z, then Z is chaotic on W . Now, we prove the converse of this important theorem,
as says Theorem 3 in what follows. Observe that, due to Theorem 2, we must
impose a condition demanding the positive Lebesgue measure of the considered set.

Theorem 3. If Z is chaotic on the compact invariant set W and med(W ) > 0,
then W is positive minimal and negative minimal for Z.
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Proof. According to Theorem 1, Z is positive chaotic onW . So, W is compact, non-
empty and positive invariant. Suppose that W is not positive minimal. In this case,

there exists a proper subset W̃ of W with the previous three properties. Moreover,

by Lemma 1 and Theorem 2, we get med(W̃ ) > 0. Of course W̃ is not dense in

W since W̃ is compact and W̃ 6= W . Therefore there exists an open set A ⊂ W

such that A ∩ W̃ = ∅. We can take A in such a way that med(A) < med(W )/2.

Let B ⊂ W̃ an open set of W (this is possible because med(A) < med(W )/2).
In this way, using the open sets A and B, we have that Z is not TPT. But this
is a contradiction with the fact that Z is chaotic on W . Therefore, W is positive
minimal for Z.

An analogous argument proves that W is negative minimal for Z. �

Next corollary is a straightforward consequence of Theorem 3, but it is very
important once it provides a ultimate answer about the relation between chaotic
systems and minimal sets.

Corollary 1. If Z is chaotic on W and med(W ) > 0 then W is minimal for Z.

Proof. It is enough to use Theorem 3 and Lemma 2 of [6]. �

We remark that the converse is not true, as observed in [6].

Next two corollaries are also consequences of Theorem 3. Their proof, analo-
gously, are quite trivial although the results can find applications.

Corollary 2. If med(W ) > 0 and Z has a pseudo equilibria on W , then Z is not
chaotic on W .

Proof. It is not difficult to see that a pseudo equilibria is neither positive nor neg-
ative minimal for Z. Therefore the proof follows straightforward from Theorem
3. �

Corollary 3. If Z is positive (resp. negative) chaotic on W and med(W ) > 0,
then W is positive (resp. negative) minimal.

Proof. It is enough repeat the proof of Theorem 3. �

The next result provide a sufficient condition in order to a PSVF Z be chaotic
on an invariant compact set W . Additionally, it guarantee that under suitable
hypotheses the periodic trajectories of Z are dense in W .

Theorem 4. Let Z be a PSVF and W a compact positive (respect. negative) in-
variant set. Given x, y ∈ W , assume that there exist a positive (respect. negative)
trajectory φ+

t (respect. φ−

t ) connecting x and y. Then Z is positive (respect. neg-
ative) chaotic on W and the positive (respect. negative) periodic trajectories of Z
are dense in W .

The last theorem is inspired in Lemma 1 and Theorems 8 and 10 of [6] and it
proof is analogous to the proofs of these results, so we will not prove it here. Also,
Theorem 4 leads to the next corollary:

Corollary 4. Let Z be a PSVF and W a compact invariant set on which any two
points can be connected simultaneously by positive and negative trajectories. Then
Z is chaotic on W and its periodic trajectories are dense in W .
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Proof. Since every pair of points in W can be connected simultaneously by positive
and negative trajectories of Z, by Theorem 4, the PSVF Z is both positive and
negative chaotic on Z. So, by Theorem 1, we get that Z is chaotic on W . Moreover,
since the positive and negative periodic trajectories of Z are dense in W , the density
of the periodic trajectories of Z on W is straightforward. �
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