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Abstract. We address the problem of understanding the dynamics
around typical singular points of 3D piecewise smooth vector fields. A
model Z0 in 3D presenting a T-singularity is considered and a complete
picture of its dynamics is obtained in the following way: (i) Z0 has an
invariant plane π0 filled up with periodic orbits (this means that the
restriction Z0|π0

is a center around the singularity), (ii) All trajectories
of Z0 converge to the surface π0, and such attraction occurs in a very
non-usual and amazing way, (iii) given an arbitrary integer k ≥ 0 then
Z0 can be approximated by π0-invariant piecewise smooth vector fields
Zε such that the restriction Zε|π0

has exactly k-hyperbolic limit cycles,
(iv) the origin can be chosen as an asymptotic stable equilibrium of Zε

when k = 0, and finally, (v) Z0 has infinite codimension in the set of all
3D piecewise smooth vector fields.

1. Introduction

Our interest in this paper is to study some qualitative aspects of piecewise
smooth vector fields (PSVFs for short) in 3D. Roughly speaking, as stated
in [5], a PSVF Z = (X,Y ) is a pair of Cr-vector fields X and Y (both
defined on R

3), in such a way that just their restrictions to some regions
(half-spaces) separated by a codimension one surface Σ (called switching
manifold) are considered. In Section 2 we give a precise definition.

In this context, some of the points with richer dynamics are those ones
where the trajectories of X and/or Y are tangent to Σ. These points are
called tangential singularities. The most known tangential singularity of a
smooth system X is the fold singularity (also called fold point), which is
characterized by the quadratic contact of an orbit of X with Σ. A fold
point p can be visible or invisible. It is visible for X if the X-trajectory
passing though p remains in the same side where X is defined, otherwise it
is invisible. In 3D, generically there exists a curve of tangential singularities
SX ⊂ Σ passing through p (the same for Y ).

If p ∈ Σ is a fold singularity of both systems X and Y then it is called a
two-fold singularity. This singularity is a prototypical model in the generic
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classification of singularities in PSVFs. As pointed out in [7], a two-fold
singularity is an important organizing centre because it brings together all
of the basic forms of dynamics possible in a PSVF. There are many dis-
tinct topological types of two-fold singularities and the most interesting of
them is the so called T-singularity. We say that p is a T-singularity (or
Teixeira-singularity − due to the pioneering work [20] − or invisible two-
fold singularity) for Z = (X,Y ) if p is an invisible fold point of both X and
Y and SX meets SY transversally at p (see Figure 1). The interested reader
can see more details about the T-singularity in [2, 3, 6, 7, 8, 12, 13, 20].

Σ

SX

SY

Figure 1. T-singularity.

Our primary concern in this article is to show the existence of a infinite
codimension two-fold singularity. In order to do it, we study smooth non-
linear perturbations of a specific model of 3D degenerate T-singularity and
a complete picture of its amazing dynamics is exhibited. It is worth noting
that some interesting bifurcations of such T-singularity are exhibited.

A formal codimension study of a singularity must contemplate the mini-
mal number of parameters necessary in order to obtain all topological types
of dynamical systems around the dynamical system presenting the singular-
ity. In [5] the authors perform this study for a planar two-fold singularity
of PSVFs.

Some ideas and constructions presented in [5] and [6] are adapted in our
approach. As consequence, we are able to produce an arbitrary number of
topological types of PSVFs in a small neighborhood of a PSVF presenting
a T-singularity. So, this T-singularity has infinite codimension.

Regardless of, this work fits into a general program for understanding the
dynamics of higher dimension vector fields expressed by:

(1) u̇ = F (u) + sgn(f(u))K

where u = (u1, u2, . . . , un) ∈ R
n, K is a constant n-dimensional vector,

f : Rn → R is a smooth mapping and F : Rn → R
n, in general, is not

smooth in the switching manifold Σ = {f−1(0)}.
Systems like (1) are wide used in applications and appears in models of

Mechanics Engineering (see [4, 10, 18]), Electric Engineering (see [2, 14]),
Biologic/Control Theory/Economics (with sudden external influences, see
[9]), among others. In fact, every system susceptible to on-off operations
are modelled by systems like (1) which imposes an interdisciplinary aspect
on this theory.
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The sgn function produces, in general, lost of differentiability of (1) when
the trajectories pass throught Σ. So, (1) is a non-smooth (or piecewise
smooth) system. As also happens for smooth systems, some choices on
the functions at the right-side of (1) generate non stable behavior. There
are in the current literature a huge variety of papers dealing with stability
conditions of models like (1) (see [19, 20] among others).

It is worth mentioning that in [1] Anosov proves the asymptotic stability
of the origin of (1) when F is a linear vector field. After, Küpper-Kunze-
Hosham found invariant varieties of (1) when K = 0. In fact, they show the
existence of invariant varieties (cones) and prove that the trajectories of (1)
twist (curl up) until it (see [15, 16, 17]).

In our approach the following 3D system is considered:

Z0(x, y, z) = (ẋ, ẏ, ż) = F (x, y, z) + sgn(z)K,

where f(x, y, z) = z,

F (x, y, z) =
1

2

(
-1 -1 0
-1 -1 0
1 -1 0

)(
x
y
z

)
+
1

2
sgn(z)

(
-1 -1 0
-1 -1 0
-1 -1 0

)(
x
y
z

)

and

K =

(
-2
2
0

)
,

or equivalently:

(2)

Z0(x, y, z) =

{
X(x, y, z) = (−1− (x+ y), 1− (x+ y),−y) if z ≥ 0,
Y0(x, y, z) = (1,−1, x) if z ≤ 0.

In fact, as exhibited in [16, 17], we also identify an invariant manifold in
our model. Morevoer, the trajectories converge to it in a very unusual way.
The richness of our model is revealed after a suitable perturbation of it. In
such case we conserve the invariant manifold and identify the birth of an
arbitrary number of limit cycles. Also, we obtain the asymptotic stability
of the origin (as in [1]).

Now we state the main results of the paper.

Theorem A. Let Z0 be given by (2) and π0 the plane {y+x = 0}. For each
integer k ≥ 0, there exists a one-parameter family of π0-invariant PSVFs
Zε satisfying:

(a) Zε → Z0 when ε → 0;
(b) Zε has exactly k hyperbolic limit cycles in a neighborhood of the

origin. The same holds for k = ∞ and,
(c) All trajectories of Z0 and Zε converge to π0.
(d) When ε > 0 and k = 0, the origin is an asymptotic stable equilibrium

point for Zε.
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An immediate consequence of Theorem A is:

Theorem B. The PSVF Z0, given by (2), has infinite codimension.

The paper is organized as follows. In Section 2 we introduce the termi-
nology, some definitions and the basic theory about PSVFs. In Section 3 we
present properties towards the understanding of the phase portrait of (2).
In Section 4 suitable perturbations of (2) are considered and the birth of
limit cycles are explicitly exhibited. In Section 5 we prove the main results.
In Section 6 we made a brief conclusion about the results in this paper and
in Section 7 we picture some numerical analysis and the phase portrait of
(2) around the origin.

2. Preliminaries

In this section we give a brief review of the theory.
Let V be an arbitrarily small neighborhood of 0 ∈ R

3. We consider a
codimension one manifold Σ of R3 given by Σ = f−1(0), where f : V → R

is a smooth function having 0 ∈ R as a regular value (i.e. ∇f(p) 6= 0, for
any p ∈ f−1(0)). We call Σ the switching manifold that is the separating
boundary of the regions Σ+ = {q ∈ V | f(q) ≥ 0} and Σ− = {q ∈ V | f(q) ≤
0}. Throughout paper we assume that Σ = f−1(0), where f(x, y, z) = z.

Designate by χ the space of Cr-vector fields on V ⊂ R
3 endowed with the

Cr-topology, with r ≥ 1 large enough for our purposes. Call Ωr the space of
vector fields Z : V → R

3 such that

(3) Z(x, y, z) =

{
X(x, y, z), for (x, y, z) ∈ Σ+,
Y (x, y, z), for (x, y, z) ∈ Σ−,

where X = (X1,X2,X3), Y = (Y1, Y2, Y3) ∈ χ. We endow Ωr with the
product topology. The trajectories of Z are solutions of q̇ = Z(q) and
we will accept it to be multi-valued in points of Σ. The basic results of
differential equations, in this context, were stated in [11].

On Σ we distinguish the following regions:
• Crossing Region: Σc = {p ∈ Σ |X3(p) · Y3(p) > 0}. Moreover, we

denote Σc+ = {p ∈ Σ |X3(p) > 0, Y3(p) > 0} and Σc− = {p ∈ Σ |X3(p) <
0, Y3(p) < 0}.

• Sliding Region: Σs = {p ∈ Σ |X3(p) < 0, Y3(p) > 0}.
• Escaping Region: Σe = {p ∈ Σ |X3(p) > 0, Y3(p) < 0}.
When q ∈ Σs∪Σe, following the Filippov’s convention, the sliding vector

field associated to Z ∈ Ωr is the vector field Ẑs tangent to Σs ∪ Σe and
expressed in coordinates as

(4) Ẑs(q) =
1

(Y3 −X3)(q)
((X1Y3 − Y1X3)(q), (X2Y3 − Y2X3)(q), 0).

Associated to (4) there exists the planar normalized sliding vector field

(5) Zs(q) = ((X1Y3 − Y1X3)(q), (X2Y3 − Y2X3)(q)).
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Remark 1. Note that, if q ∈ Σs then X3(q) < 0 and Y3(q) > 0. So,

(Y3−X3)(q) > 0 and therefore, Ẑs and Zs are topologically equivalent in Σs

since they have the same orientation and can be Cr-extended to the closure

Σs of Σs. If q ∈ Σe then Ẑs and Zs have opposite orientation.

In this context, a rich dynamics occurs on those points p ∈ Σ such that
X3(p) ·Y3(p) = 0, called tangential singularities of Z (i.e., the trajectory
through p is tangent to Σ).

For practical purposes, the contact between the smooth vector field X
and the switching manifold Σ = f−1(0) is characterized by the expression
X.f(p) = 〈∇f(p),X(p)〉 = 0 where 〈., .〉 is the usual inner product in R

3. In
this way, we say that a point p ∈ Σ is a fold point of X if X.f(p) = 0 but
X2.f(p) 6= 0, where Xi.f(p) =

〈
∇Xi−1.f(p),X(p)

〉
for i ≥ 2. Moreover,

p ∈ Σ is a visible (respectively invisible) fold point of X if X.f(p) = 0
and X2.f(p) > 0 (respectively X2.f(p) < 0). In addition, a tangential
singularity q is singular if q is a invisible tangency for both X and Y . On
the other hand, a tangential singularity q is regular if it is not singular.

Call SX (resp. SY ) the set of all tangential singularities of X (resp.
Y ). In 3D, a point of Σ at which two curves of fold singularities SX and
SY meet is called a two-fold singularity. This singularity is a prototypical
model in the generic classification of singularities in PSVFs. As pointed
out in [7], a two-fold singularity is an important organizing centre because
it brings together all of the basic forms of dynamics possible in a PSVF.
There are many distinct topological types of two-fold singularities and the
most interesting of them is the so called T-singularity. We say that p is
a T-singularity (or Teixeira-singularity or invisible two-fold singularity) for
Z = (X,Y ) if p is an invisible fold point of bothX and Y and the intersection
of SX and SY is transversal at p (see Figure 1). It is easy to check that
in the model (2) the origin is a T-singularity. In this article, we study
smooth nonlinear perturbations of this model and a complete picture of its
dynamics is exhibited. The interested reader can see more details about the
T-singularity in [2, 3, 6, 7, 8, 12, 13, 20].

It is worth to say that some constructions and ideas of [5] and [6] are very
useful in our approach.

Now we establish a convention on the trajectories of orbit-solutions of a
PSVF.

Definition 1. The local trajectory (orbit) φZ(t, p) of a PSVF given by
(3) through p ∈ V is defined as follows:

• For p ∈ Σ+\Σ = {q ∈ V | z > 0} and p ∈ Σ−\Σ = {q ∈ V | z < 0}
the trajectory is given by φZ(t, p) = φX(t, p) and φZ(t, p) = φY (t, p)
respectively.

• For p ∈ Σc+ and taking the origin of time at p, the trajectory is
defined as φZ(t, p) = φY (t, p) for t ≤ 0 and φZ(t, p) = φX(t, p) for
t ≥ 0. For the case p ∈ Σc− the definition is the same reversing
time.
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• For p ∈ Σe and taking the origin of time at p, the trajectory is defined
as φZ(t, p) = φZΣ(t, p) for t ≤ 0 and φZ(t, p) is either φX(t, p) or
φY (t, p) or φZΣ(t, p) for t ≥ 0. For p ∈ Σs the definition is the same
reversing time.

• For p a regular tangency point and taking the origin of time at p, the
trajectory is defined as φZ(t, p) = φ1(t, p) for t ≤ 0 and φZ(t, p) =
φ2(t, p) for t ≥ 0, where each φ1, φ2 is either φX or φY or φZΣ .

• For p a singular tangency point φZ(t, p) = p for all t ∈ R.

Definition 2. The orbit (trajectory) of a point p ∈ V is the set γ(p) =
{φZ(t, p) : t ∈ R} obtained by the concatenation of local trajectories.

Consider 0 6= p ∈ Σc+. It is easy to see that there exists a time t1(p) > 0,
called X-fly time, such that the forward trajectory of X passing through p
at t = 0 return to Σ after t1(p). We define the half return map associated to
X by ϕX(p) = φX(t1(p), p) = p1 ∈ Σ. When p1 ∈ Σc−, let t2(p1) > 0 be the
Y -fly time of the trajectory of Y passing through p1. Define the half return
map associated to Y by ϕY (p1) = φY (t2(p1), p1) ∈ Σ. The Cr involution ϕX

(resp. ϕY ) is such that Fix(ϕX) = SX (resp. Fix(ϕY ) = SY ). The first
return map associated to Z = (X,Y ) is defined by the composition of these
involutions, i.e.,

(6) ϕZ(p) = ϕY ◦ ϕX(p) = φY (t2(p1), φX(t1(p), p))

or the reverse, applying first the flow of Y and after the flow of X. See
Figure 2 and details in [21].

p

p1

ϕZ(p)

Figure 2. First Return Map.

The mapping ϕZ is an important object in order to study the behavior
of Z around a T-singularity. The proofs of the main results require a de-
tailed analysis of the return map and different domains (departure regions),
according to the Filippov’s decomposition of Σ, must be considered. For
example, if q ∈ Σe then the iteration of both mappings ϕY ◦ ϕX(q) and
ϕX ◦ ϕY (q) must be considered.

3. Properties of System Z0 given by (2)

In this section we describe some important features about the PSVF given
by (2). In Subsection 3.1 we describe the sliding vector field associated to
(2). In Subsection 3.2 we analyze the first return map associated to it. In
Subsection 3.3 we analyze the way in which the trajectories converge to a
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limit set. This last analysis permits us to detect the behavior of certain
invariant sets.

3.1. The sliding vector field associated to (2). Using Equation (5),
associated to (2) we have the normalized sliding vector field

(7) Zs
0(x, y, z) = ((−1− (x+ y))x+ y, (1− (x+ y))x− y, 0).

Let us understand the phase portrait of (7).

Proposition 3. The normalized sliding vector field Zs
0 , given by (7), has a

saddle-node at the origin.

Proof. Identify Σ with the xy-plane. Consider the change of variables (u, v) =
(x + y, x − y). Then (7) can be re-written in the form (u̇, v̇) = (−(u +
v)u,−2v). This last system has the origin as a unique equilibrium with
eigenvectors v1 = (1, 0), v2 = (0, 1) associated to the eigenvalues λ1 = 0,
λ2 = −2 respectively. The phase portrait is pictured at Figure 3.

Figure 3. Phase Portrait of the normalized sliding vector field Zs

0
.

�

Remark 2. Since (7) has a saddle-node at the origin, by Remark 1 we must
reverse the orientation in Σe. So, we conclude that the sliding vector field
associated to Z0 has the phase portrait shown at Figure 4. Note that the
straight line y + x = 0 in Σ, where Y3 − X3 = 0 in (4), is composed only
by equilibrium points of the sliding vector field associated to Z0. Moreover,
except by the stable invariant manifold, the trajectories of the sliding vector
field associated to Z0 depart from Σe.

3.2. The first return map associated to (2). In order to exhibit the first
return map associated to Z0 = (X,Y0), given by (2), we have to write the
expressions of the half return maps ϕX and ϕY0 . A straightforward calcula-
tion shows that the trajectories φX and φY0 are parameterized, respectively,
by

(8) φX(t) = (−t+k1e
−2t+k2, t+k1e

−2t−k2,−t2/2+k1e
−2t/2+k2t+k3),
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Figure 4. Phase Portrait of the sliding vector field associated to Z0.

and

(9) φY0(t) = (t+ l1,−t+ l2, t
2/2 + l1t+ l21/2 + l3),

Consider the planes πk = {(x, y, z) ∈ V | y = −x+ k}, with k ∈ R.

Proposition 4. Given an arbitrary point (x0, y0, 0) ∈ Σc+ then
ϕX(x0, y0, 0) = (−t2+((x0+y0)/2)e

−2t2+(x0−y0)/2, t2+((x0+y0)/2)e
−2t2−

(x0 − y0)/2, 0), where the X-fly time t2 > 0 is given implicitly by

(10) −t22/2 + ((x0 + y0)/4)e
−2t2 + ((x0 − y0)/2)t2 − (x0 + y0)/4 = 0.

In particular, φX(π0 ∩ Σ+) ⊂ (π0 ∩ Σ+) and ϕX(x0,−x0, 0) = (−x0, x0, 0).

Proof. Considering the initial condition (x0, y0, 0) and (8), let t2 > 0 be the
first time such that

−t2/2 + ((x0 + y0)/4)e
−2t + ((x0 − y0)/2)t − (x0 + y0)/4 = 0.

Using (8) it is easy to see that

ϕX(x0, y0, 0) =

(−t2+((x0+y0)/2)e
−2t2+(x0−y0)/2, t2+((x0+y0)/2)e

−2t2−(x0−y0)/2, 0).

In particular, for p0 = (x0, y0, 0) = (x0,−x0, 0) ∈ π0 ∩ Σ, we obtain that
the first two coordinates of φX(t, p0) are x(t) = −t + x0 and y(t) = t −
x0 = −x(t). Moreover, in this case we can solve explicitly the equation
−t22/2 + ((x0 + y0)/2)e

−2t2/2 + ((x0 − y0)/2)t2 − (x0 + y0)/4 = 0 and we
obtain t2 = 2x0. So, ϕX(x0,−x0, 0) = (−x0, x0, 0). This concludes the
proof. �

Proposition 5. Given an arbitrary point (x0, y0, 0) ∈ Σc− then
ϕY0(x0, y0, 0) = (−x0, y0 +2x0, 0). In particular, φY0(πk ∩Σ−) ⊂ (πk ∩Σ−).

Proof. Considering the initial condition (x0, y0, 0) and (9), in order to deter-
mine ϕY0 it is enough to obtain the first time t1 > 0 such that t21/2+x0t1 = 0.
So t1 = −2x0 and ϕY0(x0, y0, 0) = (−x0, y0 + 2x0, 0). In particular, for
p0 = (x0, y0, 0) = (x0,−x0 + k, 0) ∈ πk ∩ Σ−, the first two coordinates of
φY (t, p0) are x(t) = t+x0 and y(t) = −t−x0+k = −(t+x0)+k = −x(t)+k.
This concludes the proof. �
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Proposition 6. The plane π0 = {(x, y, z) ∈ V |x+ y = 0} is Z0-invariant.
Moreover, Z0|π0 is a center.

Proof. By Propositions 4 and 5 we get that π0 is invariant by the flow of
Z0. In order to see that Z0 has a center at π0 it is enough to see that

ϕZ0(x0,−x0, 0) = ϕY0 ◦ ϕX(x0,−x0, 0) = ϕY0(−x0, x0, 0) = (x0,−x0, 0).

�

Now we will prove that π0 is a hyperbolic global attractor for the trajec-
tories of Z0.

Proposition 7. Let r0 be the straight line given by r0 = π0 ∩ Σ. Given
(x0, y0, 0) ∈ Σc then

d(ϕZ0(x0, y0, 0), r0) < d((x0, y0, 0), r0).

This means that the trajectories of Z0 are converging to r0. Moreover,

ϕn
Z0
(x0, y0, 0) = (−xn, xn + (x0 + y0)e

−2(t
(1)
2 +...+t

(n)
2 ), 0)

where t
(i)
2 is the fly time necessary to the X-trajectory by ϕi

Z0
(x0, y0, 0) re-

turns to Σ and xn = −t
(n)
2 + ((x0 + y0)/2)e

−2(t
(1)
2 +...+t

(n)
2 ) − xn−1 − (x0 +

y0)(e
−2(t

(1)
2 +...+t

(n−1)
2 ))/2.

Proof. By Proposition 4 we obtain

ϕX(x0, y0, 0) =

(−t2+((x0+y0)/2)e
−2t2+(x0−y0)/2, t2+((x0+y0)/2)e

−2t2−(x0−y0)/2, 0),

where t2 > 0 is given implicitly by

−t22/2 + ((x0 + y0)/2)e
−2t2/2 + ((x0 − y0)/2)t2 − (x0 + y0)/4 = 0.

By Proposition 5,
(11)

ϕZ0(x0, y0, 0) = (ϕY ◦ ϕX)(x0, y0, 0) =

=
(
t2 − ( (x0+y0)

2 e−2t2 − (x0−y0)
2 ,−t2 + 3( (x0+y0)

2 e−2t2 + (x0−y0)
2 , 0

)
.

Then we get,

d(ϕZ0(x0, y0, 0), r0) =

√
2

2
(x0 + y0)e

−2t2 <

√
2

2
(x0 + y0) = d((x0, y0, 0), r0).

In order to obtain that

ϕn
Z0
(x0, y0, 0) = (−xn, xn + (x0 + y0)e

−2(t
(1)
2 +...+t

(n)
2 ), 0),

with

xn = −t
(n)
2 +

(x0 + y0)

2
e−2(t

(1)
2 +...+t

(n)
2 )−xn−1−

(x0 + y0)(e
−2(t

(1)
2 +...+t

(n−1)
2 ))

2
,

it is enough to use n times Propositions 4 and 5. �
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Proposition 8. Let p0 = (x0, y0, 0) ∈ π0. The first return map ϕZ(p0)
has eigenvalues µ1 = 1 and µ2 = 1 − 4x0 + 8x20 + O(x20) and eigenvectors
u1 = (−1, 1) and u2 = (−(1 − 2x0 + 2x0)/(1 − 4x0 + 6x20) + O(x20), 1),
respectively.

Proof. Since we can not solve Equation (10) we consider the second order
series expansion of e−2t. So we are able to solve (10) and obtain the X-fly
time of p0. Moreover, a straightforward calculation shows that the diffeo-
morphism ϕZ(p0) has eigenvalues µ1 = 1 and µ2 = 1 − 4x0 + 8x20 and
eigenvectors u1 = (−1, 1) and u2 = (−(1 − 2x0 + 2x0)/(1 − 4x0 + 6x20), 1),
respectively. �

Proposition 9. All trajectories of Z0, given by (2), converge to the plane
π0.

Proof. First note that each q ∈ V hits Σ for some positive time. Using
Remark 2, the position of the eigenspaces of (7) and Propositions 7 and 8
it is easy to see that given p ∈ Σ = Σs ∪Σd ∪Σc the trajectories of Z0 by p
converge to π0. �

3.3. The convergence of the trajectories. Now we picture the scenario
describing the asymptotic behavior of Z0 in V . As we said above, the plane
π0 is an attractor for φZ(t, p) and separates V in two open regions V+ =
{(x, y, z) ∈ V |x+ y > 0} and V− = {(x, y, z) ∈ V |x+ y < 0}.

Since all points of V hit Σ, in order to determine the asymptotic behavior
of a trajectory it is enough to take this trajectory departing just from points
in Σ. Consider the partition of Σ = Σc+

s ∪Σc+
e ∪Σe ∪Σc−

e ∪Σc−
s ∪Σs ∪ r+0 ∪

r−0 ∪ S−

Y ∪ S−

X ∪ S+
Y ∪ S+

X ∪ 0}, where Σc+
s = Σc+ ∩ V +, Σc+

e = Σc+ ∩ V −,

Σc−
e = Σc− ∩ V −, Σc−

s = Σc− ∩ V +, r+0 = r0 ∩ Σc+, r−0 = r0 ∩ Σc−, S−

Y =

SY ∩V −, S−

X = SX ∩V −, S+
Y = SY ∩V +, S+

X = SX ∩V + and 0 = {(0, 0, 0)}.
See Figure 5.

Σc+
s

Σc+
eΣe

Σc−
e

Σc−
s

Σs

r+0
S−

Y

S−

X

r−0 S+
Y

S+
X

Figure 5. Partition of Σ.

Consider the following steps:

(1) First let us analyze the trajectories in r0.
(1.i) If p = 0 then, according to the fifth bullet of Definition 1,

φZ(t, p) = 0 for all t ∈ R.
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(1.ii) If p ∈ r−0 ∪ r+0 then, according to Proposition 6, φZ(p)
became restrict to π0 and describes a periodic orbit around the ori-
gin.

(2) Let us analyze the trajectories in V + ∩ Σ.
(2.i) If p ∈ Σs then, according to Proposition 3, φZ(t, p) → 0

when t → +∞. By the fourth bullet of Definition 1, the same holds
when p ∈ S+

Y ∪ S+
X .

(2.ii) If p = (xp, yp, 0) ∈ Σc+
s then we can put yp = −Mxp,

where 0 < M < 1. With this, we are able to explicitly calcu-
late the successive returns ϕn

Z(p) = (Πn
1 (p),Π

n
2 (p), 0), with n ≥ 1.

A straightforward calculation shows that Πn
2 (0) is positive when

2n/(2n + 1) > M . This implies that after the first integer N such
that 2N/(2N + 1) > M we obtain Πn

2 (p) > 0 and so Πn(p) belongs
to Σs, where y > 0. By the analysis done in (2.i), φZ(t, p) → 0
when t → +∞. This means that the competition between the two
attractors π0 and Σs is won by Σs.

(2.iii) If p = (xp, yp, 0) ∈ Σc−
s then φZ(p,−2xp) ∈ Σc+

s and so,
repeat the analysis of item (2.ii).

(3) Let us analyze the trajectories in V − ∩ Σ.
(3.i) If p ∈ Σc+

e ∪ S−

Y then we can put yp = −Rxp, where 0 <
R < 1. With this, we are able to explicitly calculate the successive
returns ϕn

Z(p) = (Πn
1 (p),Π

n
2 (p), 0), with n ≥ 1. A straightforward

calculation shows that ϕn
Z(p) → ∞. So, φZ(t, p) → ∞ when t →

+∞.
(3.ii) If p ∈ Σc−

e ∪ S−

X then φZ(p,−2xp) ∈ Σc+
e and so, repeat

the analysis of the previous bullet.
(3.iii) If p ∈ Σe then, according to the third bullet of Definition

1, there are three choices for φZ(t, p). When φZ(t, p) = φX(t, p) or
when φZ(p, t) = φY (t, p) the trajectory hits Σc−

e or Σc+
e , respectively.

In both cases we use the previous two items. When φZ(t) = φZs(t, p)
then, by Remark 2, there exists an invariant manifold in Σe converg-
ing to the origin and the other points in Σe converge to S−

Y ∪S−

X (and
so, we use the previous two items). This means that the competition
between the attractor π0 and the repulsiveness of Z in p ∈ Σc+

e is
won by the second one.

Remark 3. As consequence of the previous analysis we are able to say that
any Z-trajectory, with Z given by (2), through p ∈ V either describes a
periodic orbit or converges to a stationary point or leaves any ball around
the origin, according to the initial position of p.

4. Properties of an oriented perturbation of System Z0
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4.1. Auxiliary results. In what follows, h : R → R will denote the C∞-
function given by

h(w) =

{
0, if w ≤ 0;

e−1/w, if w > 0.

Consider the function F ρ
ε (x, y) : R2×R, where either ρ = f or ρ = i, such

that

(12) F f
ε (x, y) = −εh(x)h(−y)(ε − x)(2ε− x) . . . (kε− x)

with k ∈ N, and

(13) F i
ε(x, y) = h(x)h(−y) sin(πε2/x).

Lemma 10. Consider the function F f
ε (x, y) given by (12).

(i) If ε < 0 then F f
ε does not have roots in (0,+∞)× {y}.

(ii) If ε > 0 then F f
ε has exactly k roots in (0,+∞) × {y}, these roots

are {(ε, y), (2ε, y), . . . , (kε, y)}.

(iii)
∂F f

ε

∂x
(jε, y) = −ǫh(−y)(−1)jεkh(jε)(k−j)!(j−1)! for j ∈ {1, 2, . . . , k}.

It means that such partial derivative at (jε, y) is positive for j odd
and negative for j even.

Proof. When x > 0, by a straightforward calculation F f
ε (x, y) = 0 if, and

only if, (ε− x)(2ε− x) . . . (kε− x) = 0. So, the roots of F f
ε (x, y) in (0,+∞)

are ε, 2ε, . . . , kε. Moreover,

∂F f
ε

∂x
(x, y) = −ǫh(−y)

∂

∂x

(
(jε−x)H(x)

)
= −ǫh(−y)

(
(jε−x)

∂H

∂x
(x)−H(x)

)
,

where H(x) = F f
ε (x, y)/(ǫh(−y)(jε − x)). So,

∂F f
ε

∂x
(jε, y) = ǫh(−y)H(jε) =

= ǫh(−y)εkh(jε)(1 − j) . . . ((j − 1)− j)((j + 1)− j) . . . (k − j)

= −ǫh(−y)εkh(jε)(−1)j
(
(j − 1) . . . (j − (j − 1))

)(
((j + 1)− j) . . . (k − j)

)

= −ǫh(−y)(−1)jεkh(jε)(k − j)!(j − 1)!

This proves items (ii) and (iii). Item (i) follows immediately. �

Lemma 11. Consider the function F i
ε(x, y) given by (13). For ε 6= 0

the function F i
ε has infinitely many roots in (0, ε2) × {y}, these roots are

{(ε2, y), (ε2/2, y), (ε2/3, y), . . . } and

∂F i
ε

∂x
(ε2/j, y) = h(−y)(−1)j(−πj2/ε2)h(ε2/j) for j ∈ {1, 2, 3, . . . }.

It means that such derivative at (ε2/j, y) is positive for j odd and negative
for j even.
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Proof. When x > 0, by a straightforward calculation F i
ε(x, y) = 0 if, and

only if, sin(πε2/x) = 0. So, the roots of F i
ε(x, y) in (0, ε2) × {y} are

(ε2, y), (ε2/2, y), (ε2/3, y), . . . . Moreover,

∂F i
ε

∂x
(x, y) = h(−y)[h′(x) sin(πε2/x) + h(x) cos(πε2/x)(−πε2/x2)].

So,

∂F i
ε

∂x
(ε2/j, y) = h(−y)[h′(ε2/j) sin(πε2/j)+

+ h(ε2/j) cos(πε2/j)(−πj2/ε2)]
= h(−y)(−1)j(−πj2/ε2)h(ε2/j).

�

Consider Z0 given by (2) and

(14)

Zρ
ε (x, y, z) =

{
X(x, y, z) = (−1− (x+ y), 1− (x+ y),−y) if z ≥ 0,

Y ρ
ε (x, y, z) = (1,−1, x+ ∂F ρ

ε

∂x (x, y)) if z ≤ 0.

Remark 4. Take Zε = Zρ
ε , with ρ = i, f . It is easy to see that Zε → Z0

when ε → 0.

Associated to (14) we have the normalized sliding vector field given by

Zs
ρ,ε(x, y, z) =

(
(−1− (x+ y))(x+

∂F ρ
ε

∂x
(x, y)) + y, (1− (x+ y))(x+

∂F ρ
ε

∂x
(x, y))− y, 0

)
.

A straightforward calculation shows that the trajectory φY ρ

ε
of Y ρ

ε given
in (14) are parameterized by

(15) φY ρ

ε
(t) = (t+ l1,−t+ l2, t

2/2 + l1t+ F ρ
ε (t+ l1,−t+ l2) + l3).

Proposition 12. Given an arbitrary point (x0, y0, 0) ∈ Σc− then
ϕY ρ

ε
(x0, y0, 0) = (t1 + x0,−t1 + y0, 0), where the Y ρ

ε -fly time t1 > 0 is

given implicitly by t21/2 + x0t1 + F ρ
ε (t1 + x0,−t1 + y0) = 0. In particular,

φY ρ

ε
(πk ∩Σ−) ⊂ (πk ∩Σ−).

Proof. Let t1 > 0 the first time such that t21/2+x0t1+F ρ
ε (t1+x0,−t1+y0) =

0. Using (15) it is easy to see that ϕY ρ

ε
(x0, y0, 0) = (t1 + x0,−t1 + y0, 0).

In particular, for p0 = (x0, y0, 0) = (x0,−x0 + k, 0) ∈ πk ∩ Σ−, the first
two coordinates of φY ρ

ε
(t, p0) are x(t) = t + x0 and y(t) = −t − x0 + k =

−(t+ x0) + k = −x(t) + k. This concludes the proof. �

Proposition 13. The plane π0 is invariant by the flow of Zρ
ε , given by (14).

Proof. By Proposition 12 and Proposition 4 we get that π0 is invariant by
the flow of Zρ

ε . �
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Remark 5. Since, by Proposition 7, we get that all trajectories of Z0 con-
verge to π0 we obtain that, for ε sufficiently small, the same holds for the
trajectories of Zρ

ε .

Proposition 14. Consider an integer k ≥ 0 and Zρ
ε given by (14), where

either ρ = f or ρ = i. Then Zf
ε has exactly k limit cycles and Zi

ε has infinite
many limit cycles, all of then situated in π0.

Proof. According to Remark 5, π0 is a global attractor for Zρ
ε . Also, accord-

ing to Proposition 13, π0 is invariant by the flow of Zρ
ε . So, if there exists

limit cycles, then they are situated at π0. Moreover when we restrict the
flow of Zρ

ε to π0, by Propositions 12 and 4, the fixed points of the first return
map ϕZρ

ε
= ϕY ρ

ε
◦ ϕX occurs when t = t3 = 4x0. So, take p0 = (x0,−x0, 0)

and we get

(16) ϕZρ

ε
(p0) = φY ρ

ε
(2x0,−p0) = (x0,−x0, F

ρ
ε (x0,−x0)).

When ρ = f , by Item (ii) of Lemma 10,

ϕZρ

ε
(x0,−x0, 0) = (x0,−x0, 0) ⇔ x0 = jε with ε > 0 and j = 1, 2, . . . , k.

Therefore, Zf
ε has k limit cycles, all of then situated in π0. When ρ = i, by

Lemma 11,

ϕZρ

ε
(x0,−x0, 0) = (x0,−x0, 0) ⇔ x0 = ε2/j with j = 1, 2, . . . .

Therefore, Zi
ε has infinite many limit cycles, all of then situated in π0. �

Proposition 15. All limit cycles in Proposition 14 are hyperbolic. More-
over, for ǫ > 0, if j = even then it is attractor and if j = odd then it is
repeller.

Proof. In fact, in order to prove this we must consider the expression of the
derivatives in Item (iii) of Lemma 10 and Lemma 11. Observe that when
k = 0 in Proposition 14 there is not limit cycles. In this Item (iii) of Lemma
10 also is true and the origin is an attractor equilibrium of the system. �

Remark 6. Observe that when k = 0 in Proposition 14 the system has not
limit cycles. In this Item (iii) of Lemma 10 also is true and the origin is an
attractor equilibrium of the system.

4.2. About the convergence of the trajectories of Zρ
ε , given by (14).

Now we will proceed the analysis of the behavior of the trajectories of (14)
in a neighborhood of the T-singularity (at the origin).

As stated in Propositions 13 and Remark 5, π0 is invariant by the flow of
(14) and all trajectories of (14) in a neighborhood of the T-singularity con-
verge to it. However, after the perturbation imposed to Z0, the asymptotic
behavior of the trajectories can drastically changes. The biggest change
occurs in V − when ρ = f and ǫ > 0. Following Proposition 15, we can
separate the analysis of this situation, essentially, in three cases:

• When k = 0 we get that Zρ
ε does not presents limit cycles. So, the

trajectories in V −\Σe becomes increasingly distant from the origin until
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certain moment. However, since the origin is an attractor when we restrict
the analysis to π0, there exists a moment from which the trajectory starts
to converge to origin. So, the T-singularity at the origin of (14) is asymp-
totically stable.

• When k 6= 0 is even we get that Zρ
ε presents k hyperbolic nested limit

cycles and Γk, the bigger of them, is attractor. So, the trajectories in V −\Σe

becomes increasingly distant from the origin until certain moment. However,
since the bigger limit cycle is an attractor when we restrict the analysis to
π0, there exists a moment from which the trajectory starts to converge to
it. The same holds for all attractor limit cycles at the interior of Γk. So,
the T-singularity at the origin of (14) is asymptotically stable. Also, each
one of the repeller hyperbolic limit cycles at the interior of Γk is repeller
and each one of the attractor hyperbolic limit cycles is an attractor for the
trajectories in V − ∪ π0. In fact, there are topological half-cylinder of orbits
converging to each it one of them.

• When k 6= 0 is odd we get that Zρ
ε presents k hyperbolic nested limit

cycles and Γk, the bigger of them, is repeller. So, there are trajectories in
V −\Σe leaving any neighborhood of the origin. Also, there are trajectories in
V −\Σe converging to the origin or, when k ≥ 3, to an inward hyperbolic limit
cycle. Moreover, the T-singularity at the origin of (14) is asymptotically
stable. Each one of the repeller hyperbolic limit cycles is a repeller and each
one of the attractor hyperbolic limit cycles is an attractor for the trajectories
in V − ∪ π0. In fact, there are topological half-cylinder of orbits converging
to each it one of them.

5. Proof of main results

Now we prove the main results of the paper:

Proof of Theorem A:. Item (a): It follows from Remark 4.
Item (b): It follows from Propositions 14 and 15.
Item (c): It follows from Propositions 9 and Remark 5.
Item (d): It follows from Remark 6.

�

Before to prove Theorem B, let us define the classical notion of codimen-
sion of vector fields.

Definition 16. Consider Θ(W ) ⊂ Ωr a small neighborhood a vector field
W . We say that W has codimension k if it appears k distinct topological
types of vector fields in Θ(W ).

Proof of Theorem B:. Suppose that the codimension of the T-singularity
in 2 is m < ∞. Then, in a neighborhood of Z0 there are PSVFs of, at most,
m distinct topological types. This is a contradiction due Theorem A. So,
the codimension of this singularity is infinite. �
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6. Conclusion

As usual, the main aim of the perturbation theory is to approximate a
given dynamical system by a more familiar one, regarding the former as a
perturbation of the latter. The problem is to deduce dynamical properties of
the unperturbed from the perturbed case. In this sense, we focus on certain
PSVFs Zρ

ε which are deformations of Z0.
In what follows we present a rough description of some properties that

Z0 = (X,Y0) and Zρ
ε = (X,Y ρ

ε ) enjoy simultaneously. Some of them are:

• The origin is an equilibrium point of both Z0 = (X,Y0) and Zρ
ε =

(X,Y ρ
ε ). Moreover, the tangency sets SX and SY0 (resp. SY ρ

ε
), meet

transversally at the origin,
• The plane π0 = {y + x = 0} is Z0 and Zρ

ε -invariant.
• The sliding vector fields associated to Z0 and Zρ

ε are topologically
equivalent.

Also, there are properties that Z0 and Zρ
ε do not enjoy simultaneously.

For example:

• The T-singularity at the origin of Zρ
ε is asymptotically stable.

• The PSVF Z0 restricted to π0 has a center while in Zρ
ε this center is

perturbed giving rise to hyperbolic limit cycles at π0.

Finally, as a conclusion of this paper we are able to say that the T-
singularity of the PSVF (2) has infinite codimension.

7. Appendix

Now we illustrate the theoretical analysis performed by means of some nu-
merical simulations. In the next illustrations we use the computer program
entitled ”Mathematica”.

We use the following line of commands:

solutions = Table[First[NDSolve[{x′[t] == If [z[t] > 0,

−1− (x[t] + y[t]), 1], y′[t] == If [z[t] > 0, 1− (x[t] + y[t]),−1],

z′[t] == If [z[t] > 0,−y[t], x[t]], x[0] == θ, y[0] == −θ,

z[0] == 0}, {x, y, z}, {t, 0, 2.5}]], {θ, 0.1, 2π − 0.1, 0.1}];

solutions2 = Table[First[NDSolve[{x′[t] == If [z[t] > 0,

−1− (x[t] + y[t]), 1], y′[t] == If [z[t] > 0, 1− (x[t] + y[t]),−1],

z′[t] == If [z[t] > 0,−y[t], x[t]], x[0] == cos[θ]/4, y[0] == sin[θ]/4,

z[0] == 0}, {x, y, z}, {t, 0, 2.5}]], {θ, 0.1, 2π − 0.1, 0.1}];

c1 = ContourP lot3D[z, {x,−.4, .4}, {y,−.4, .4}, {z,−.5, .5},
Contours → 0,Mesh → False];

c2 = ContourP lot3D[y, {x,−.5, .5}, {y,−.4, .4}, {z,−.5, .5},
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Contours → 0,Mesh → False];

c3 = ContourP lot3D[x+ y, {x,−.5, .5}, {y,−.4, .4}, {z,−.5, .5},
Contours → 0,Mesh → False];

The command

p3 = ParametricP lot3D[Evaluate[{x[t], y[t], z[t]}/.solutions], {t, 0, 2.5},
P lotStyle → {Thickness[.0015], Red}];Show[p3, ImageSize → Large]

generates Figure 6.

Figure 6. Phase Portrait of the center of Z0.

The command

p4 = ParametricP lot3D[Evaluate[{x[t], y[t], z[t]}/.solutions2], {t, 0, 2.5},
P lotStyle → {Thickness[.0015], Red}];Show[p4, ImageSize → Large]

generates Figure 7.
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Figure 7. Phase Portrait of trajectories in a neighborhood of the origin.
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